skip to main content


Search for: All records

Creators/Authors contains: "Flores, Marco"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. null (Ed.)
  2. null (Ed.)
    The electronic structure of a dimeric manganese hydride catalyst supported by β-diketiminate ligands, [( 2,6-iPr2Ph BDI)Mn(μ-H)] 2 , was investigated with density functional theory. A triple bond between the manganese centres was anticipated from simple electron-counting rules; however, calculations revealed Mn–Mn Mayer bond orders of 0.21 and 0.27 for the ferromagnetically-coupled and antiferromagnetically-coupled extremes, respectively. In accordance with experimentally determined Heisenberg exchange coupling constants of −15 ± 0.1 cm −1 (SQUID) and −10.2 ± 0.7 cm −1 (EPR), the calculated J 0 value of −10.9 cm −1 confirmed that the ground state involves antiferromagnetic coupling between high spin Mn( ii )-d 5 centres. The effect of steric bulk on the bond order was examined via a model study with the least sterically-demanding version of the β-diketiminate ligand and was found to be negligible. Mixing between metal- and β-diketiminate-based orbitals was found to be responsible for the absence of a metal–metal multiple bond. The bridging hydrides give rise to a relatively close positioning of the metal centres, while bridging atoms possessing 2p orbitals result in longer Mn–Mn distances and more stable dimers. The synthesis and characterization of the bridging hydroxide variant, [( 2,6-iPr2Ph BDI)Mn(μ-OH)] 2 , provides experimental support for these assessments. 
    more » « less
  3. The manganese hydride dimer, [( 2,6-iPr2Ph BDI)Mn(μ-H)] 2 , was found to mediate nitrile dihydroboration, rendering it the first manganese catalyst for this transformation. Stoichiometric experiments revealed that benzonitrile insertion affords [( 2,6-iPr2Ph BDI)Mn(μ-NCHC 6 H 5 )] 2 en route to N , N -diborylamine formation. Density functional theory calculations reveal the precise mechanism and demonstrate that catalysis is promoted by monomeric species. 
    more » « less
  4. A (BDI)Mn catalyst has been found to hydrosilylate olefins and the observed selectivity can be attributed to alkene insertion.

     
    more » « less